
A Framework for Industrial Cluster

Detection

Tomoya Mori⇤

March 2014

Abstract

This manual describes the usage of C++ and Python programs
developed for identifying industrial clusters and for studying their
spatial patterns in Mori and Smith [1].

⇤Institute of Economic Research, Kyoto University. Email: mori@kier.kyoto-
u.ac.jp.

1

1 Introduction

This manual describes the usage of C++ and Python programs devel-
oped for identifying industrial clusters and for studying their spatial
patterns in Mori and Smith [1].1 In Section 2, the required data and
their structures are described. In Sections 3 through 6, the usage of
the programs are described. All the source codes as well as the data
can be downloaded from the website specified in Section 7.

2 Data

This section describes the basic data to be prepared prior to the cluster
detection. All data are to be saved in comma-separated-values (CSV)
format.

List of all industries

Denote by I ⌘ {i1, i2, . . . , iI} the set of industries, where I (⌘ |I|) be the
cardinality of I. The list of industries is provided by (I⇥2)-dimensional
data as in Table 1, where the first column lists the enumerated integer-
valued identities (IDs) of industries (from 0 to I � 1), and the second
column lists the string-valued IDs of industries, where the latter is typ-
ically taken from industrial classifications such as Standard Industrial
Classification (SIC) codes.

0 i1

1 i2
...

...

I � 1 i
I

Table 1: List of all industries
1See also Mori and Smith [2] for an application.

2

Establishment Location Data

It is assumed that establishment counts are available for a given set
of basic regions (e.g., municipalities in Japan, counties in the US, and
unions in Germany). Denote by R ⌘ {r1, r2, . . . , rR} the set of basic re-
gions, where R ⌘ |R|. Then, the location patterns of each industry is
expected to be given by a CSV matrix as in Table 2. Here, the first col-
umn lists integer-valued region IDs,2 and the first row lists the string-
valued industry IDs (strings). Each (j, k)-th element is the number of
establishments of industry ik in region rj.

Region/Industry i1 i2 · · · i
I

r1 n11 n12 · · · n
1I

r2 n21 n22 · · · n
2I

...
...

...
. . .

...

r
R

n
R 1

n
R 2

· · · n
RI

Table 2: Establishment locations

Areal Size Data

The double-valued areal size, ar, in each individual basic region, r 2 R,
is expected to be given by two column data as in Table 3. More precisely,
the relevant area is the census-defined developable area for the cluster
detection in Section 3, while it is the total area for identifying essential
containment in Section 5.

REGION AREA

r1 a1
...

...

r
R

a
R

Table 3: Areal size data
2These IDs are typically the Census-defined jurisdiction IDs.

3

Adjacency Relations of the Basic Regions

Adjacent neighbors of each basic region should be identified prior to
cluster detection,3 and given by a CSV matrix as in Table 4, where in
each row, j, the second element is a basic region which is adjacent to
the first element so that region rj 2 R has Nj adjacent neighbors.4

REGION NEIGHBOR

r1 r11
...

...

r1 r1N1

r2 r21
...

...

r2 r2N2

...
...

r
R

r
R 1

...
...

r
R

r
RN

R

Table 4: Adjacent neighbors list

Boundary Regions

The set of boundary regions (⇢ R) needs to be defined for the cluster de-
tection. It is used in order to solidify clusters in Section 3 and agglom-
erations in Section 6 (see Mori and Smith [1, §3]). Typical boundaries
include the basic regions along the national borders and sea coasts.5

The list of boundary basic regions is given by a CSV column of basic
region IDs as in Table 5.

3GIS softwares (ArcGIS Ver.10.2 for our case) should be able to identify adjacency
relations among the basic regions. But, some manual modifications may be necessary,
since some basic regions may better be considered as adjacent, for instance, when
they are separated by narrow rivers and inland seas, but connected bridges.

4Here, only formal requirement for the set of adjacent regions of a given basic
region r is that it does not include region r itself.

5The coast of a large lake could also be boundaries when multiple basic regions
face this lake. An example is Biwa Lake in Japan as indicated in Figure 1.

4

BOUNDARY

b1
...

Table 5: Boundary regions

Figure 1 depicts the boundary regions of Japan.

Biwa Lake

Figure 1: Boundary regions

Shortest-Path Regional Sequences and Shortest-Path
Distanes

In the present cluster detection framework, all the basic regions are
considered to form a regional network, where the set of vertices consist
of the set of all basic regions, and the set of edges consist of the shortest-
route paths between all pairs of adjacent basic regions (see Table 4),
where the shortest-route distance between a given pair of basic regions
is the travel distance along the shortest road-path connecting these two

5

regions.6

A Python program, ShortestPathLocalMoveMP.py, identifies the short-
est path sequence of basic regions between each pair of basic regions,
from (i) the shortest-route distance between each pair of basic regions
and (ii) the set of neighbor basic regions of each basic region. Data (i)
is assumed to be given by a three-column CSV data as in Table 6 where
the distance values, drs, between the basic regions r and s represents
the shortest travel distance between these two regions.7 Data (ii) is the
same data described in Table 4.

ORIGIN DESTINATION DISTANCE

r1 r2 d12
...

...
...

Table 6: Shortest-route / path distances

The shortest-path sequence of basic regions between each given pair
of basic regions generated by ShortestPathLocalMoveMP.py is stored in
a CSV matrix as in Table 7. Each element lij is the first basic region to
reach from region ri along the shortest path from basic region ri to basic
region rj, where lii ⌘ ri. The shortest-path sequences of basic regions
connecting any given pair of connected basic regions can be identified
from this matrix. Here, a given pair of regions are connected if there
exists a sequence of adjacent regions in R between these two regions.
If regions riand rjare not connected, then it is indicated by `ij = �1.

6Only formal requirement for the shortest-route paths is that the inter-regional
distances define a metric in the basic-region network. Travel distances are more
desirable than simpler distances such as the Great-circle distances, since they take
into account the basic topographical influences on the practical distances.

7Table 6 is expected to include only the origin-destination pairs, (r, s), of regions
such that r < s.

6

REGION r1 · · · r
R

r1 l11 · · · l
1R

...
...

. . .
...

r
R

l
R 1

· · · l
RR

Table 7: Shortest-path sequences between basic regions

To illustrate how it works, a three-region example is shown in Table
8. The shortest path from region 1 to region 3 is given by (1, `13 =

2, `23 = 3), and that from region 3 to region 1 is given by the reversed
sequence of regions. Any other pair of regions can be reached directly
from one another.

REGION 1 2 3

1 1 2 2

2 1 2 3

3 2 2 3

Table 8: An example of the shortest-path sequences

The corresponding shortest-path distance between any given pair
of basic regions is stored as a three-column data in a CSV format as
in Table 6, where DISTANCE value here indicates the shortest-path
distance instead of shortest-route distance. As noted in Mori and Smith
[1, §3.1], shortest-path distance is at least as large as the shortest-
route distance. For instance for the three-region example shown in
Table 8, if the shortest-path distance between regions i and j is denoted
by d⇤ij(⌘ d⇤ji), then d⇤12 = d12, d⇤23 = d23 and d⇤13 = d12 + d13(� d13). If
two regions are not connected, then the shortest-path distance between
these two regions is not specified, and is treated as infinity.

Figure 2 depicts the shortest path sequence of basic regions from
Aomori-shi to Sata-cho, Kimotsuki-gun in Japan.

7

Aomori-shi

Sata-cho (Kimotsuki-gun)

Figure 2: Shortest path from Aomori-shi to Sata-cho (Kimotsuki-gun)

3 Cluster Detection Framework

3.1 Inputs and Outputs

The list of input parameters are supposed to be written in “input de-
tectclusters.txt”. There are 15 lines in this file as shown in Table 9.8

The first and second lines in Table 9 specify the range, (i, j), of in-
dustries for which the cluster detection is to be conducted, i.e., the clus-
ter schemes for the i-th through (j�1)-th industries are identified. The
values for i and j should be chosen from the first column in Table 1.

The third, and the fifth through tenth lines specify the filenames
whose contents have already been described above (the corresponding
tables are indicated in the parentheses). The fourth line specifies the
maximum allowable distance for cluster expansion which is named as
� in Mori and Smith [1, §4.2.2]. The eleventh line specifies the output

8In each line of the input file named “inputtxt” for any given C++ program
below, the part to the right of “//” is taken as comments, and is ignored by the program.

8

directory to which all the output files are expected to be written.

Line number Input Data type Description

1 First industry
integer

0  i < I

2 Last industry i < j  I

3 Industry list (Table 1) string File name

4 Cluster expansion range double [0,1)

5 Establishment counts (Table 2)

string
File name

6 Areal sizes (Table 3)
7 Adjacency relations (Table 4)
8 Boundaries (Table 5)
9 Inter-regional distances (Table 6)

10 Shortest-path sequences (Table 7)

11 Output directory Directory path

12 Event-log flag

bool (0/1) True⌘ 1
13 Summary-log flag
14 Progress-log flag
15 Temporary cluster-log flag

Table 9: Inputs for the cluster detection

The twelfth through fifteenth lines specify the types of output files
to be generated. Each input takes a 0/1 value, where value “1” means
that the corresponding log file is to be written to the folder specified
in the eleventh line, while value “0” means that this log output is sup-
pressed. The event log (12th line) records each instance of the forma-
tion of a new cluster and expansion of an existing cluster during the
process of cluster detection described in Mori and Smith [1, §4]. An
example of the event log for the case of an SIC three-digit industry,
“ophthalmic goods, including frames” of Japan (in 2001), is shown in
Table 10 below.9 The first column in the log indicates the event, ei-
ther “formation” or “expansion”, which took place; the second column
indicates the cluster at which this event took place; the third column
indicates the consolidated basic region or cluster if the event were “ex-

9The examples of cluster schemes in this article may be slightly different from
those presented in Mori and Smith [1] since the set of boundary basic regions have
been slightly updated. But, the differences are very minor.

9

pansion” of an existing cluster.10,11 The third and forth columns show
the log-likelihood and BIC values (see Mori and Smith [1, eq. (2.13)]),
respectively, after the event took place.

EVENT CLUSTER CONSOLIDATED LIKELIHOOD BIC

FORMATION 18207 – 4538.439 4534.92

FORMATION 18381 – 4954.233 4947.195

FORMATION 18201 – 5227.980 5217.423

FORMATION 18421 – 5441.396 5427.320

FORMATION 18203 – 5650.183 5632.589

FORMATION 27116 – 5802.202 5781.088

FORMATION 27202 – 5890.609 5865.977

EXPANSION 18201 18426 5959.944 5935.312

FORMATION 27126 – 5993.229 5965.077

FORMATION 13106 – 6023.563 5991.892

EXPANSION 13106 13116 6064.826 6033.155

EXPANSION 13106 11234 6096.827 6065.156
...

...
...

Table 10: Event log

The summary log in (13th line in Table 9) contains the information
shown in Table 11. The identified clusters are ordered in terms of their
BIC contributions shown in the BIC INC column (whose share in the
total BIC value for the cluster scheme is shown in the INC SHARE col-
umn), where the formal definition of the BIC contributions of individ-
ual clusters is given in Mori and Smith [1, §4.4]. The CENTER column
indicates the cluster IDs, COUNT and COUNT SHARE columns in-
dicate the establishment counts in the corresponding cluster and their
shares in the total counts of establishments in all the clusters of this in-
dustry, respectively, and the AREA SHARE column indicates the areal

10The ID for each cluster is the ID of the first basic region which was included in
this cluster.

11The basic regions or clusters indicated in the column, CONSOLIDATED, is not
only the region/cluster to be added to the cluster in the column, CLUSTER, but the
all the basic regions in the d-convex solid of this CONSOLIDATED region/cluster and
the original CLUSTER will replace the original cluster.

10

share of individual clusters in the national area.12

ORDER CENTER COUNT COUNT SHARE AREA SHARE BIC INC INC SHARE

1 18207 688 0.6040386 0.00044936 4534.92 0.7085581

2 18381 67 0.05882353 0.00011927 412.2748 0.06441583
...

...
...

...
...

...
...

44 8449 1 0.00087796 0.00050586 0.8882262 0.00013878

Table 11: Summary log

The progress log in (14th line in Table 9) contains the detailed record
of each change made in the cluster scheme as in Table 12 for the “oph-
thalmic goods” industry. The first log indicates the location and the cor-
responding BIC value of the first (single-region) cluster formed. There-
after, each log indicates the locations and the corresponding BIC values
for the best new cluster formation, or the best expansion of an existing
cluster. As for the expansion, both the expanding cluster and the can-
didate expansion are indicated. For example, in log 14, the best expan-
sion is of cluster 27126 toward region 27212 located at 6.394km from
the cluster.13 The last line in each log is the chosen action (formation
or expansion) together with the number of clusters after this change
is made. In this particular example, the cluster detection is completed
at the 91st modification, where it was found that neither new cluster

12It is possible that BIC contributions of a few clusters become negative, as this
cluster detection (based on the forward search) only guarantees the local optimum.
During the cluster detection procedure, the BIC increment is always positive when
each clusters are formed or expanded. But, it does not imply that the BIC contribu-
tions by all the resuting clusters are positive, when BIC contributions by clusters are
recomputed after the cluster scheme has been identified. Such obvious sub-optimality
arises typically for ubiquitous industries (e.g., “bakery and confectionary products”
and “cement and its products”). In the case of Japan, there are seven industries (out
of 163) in the SIC three-digit manufacturing industries for which there are clusters
with negative BIC contributions. In such a case, at least the clusters with negative
BIC contributions should be removed from the further analyses based on the identi-
fied clusters.

13This log does not distinguish whether expansion is toward a residual region or
toward an existing cluster. In this particular example “27212” is a residual region,
but in general it could belong to an existing cluster. In that case, the expansion means
the consolidation of this entire cluster to cluster, 27126.

11

formation nor new expansion of an existing cluster would not improve
BIC for the cluster scheme.14

Log : 1

First cluster at 18207

Current value : 4534.92

Log : 2

Current value : 4534.92

Candidate formation at 18381(4947.19)

Candidate expansion at : 18207 to 18381 with dist 10.0441 (4910.33)

Formation : Num clusters = 2

...

Log : 14

Current value : 6093.54

Candidate formation at 23202(6110.4)

Candidate expansion at : 27126 to 27212 with dist 6.39345 (6110.44)

Expansion : Num clusters = 9
...

Log : 91

Current value : 6400.21

Candidate formation at -1(-1)

Candidate expansion at : 9402 to 9322 with dist 31.9367 (6399.37)

Cluster system has been found ...

Table 12: Progress log

The composition of each cluster is written to a file when either for-
mation or expansion of a cluster takes place if the flag in (15th line
in Table 9) is “1”, and also when the cluster detection is completed. If
this flag is “0”, then the result is written to a file only when the cluster
detection is completed. There are two outputs, one of which lists the
“core” part of each cluster (i.e., those member basic regions of each clus-
ter containing establishments of the industry), and the other of which

14The location, “-1”, of the potential formation of a new cluster means that there is
no possible new cluster, i.e., all the basic regions with establishments of this industry
have been included in the existing clusters.

12

lists the entire d-convex solidified set of the core part of each cluster.15

Both outputs are two-column CSV data. The case of the latter output
is shown in Table 13, where the elements in the first column, Ci, indi-
cates the cluster ID, while the elements in the second column, rij 2 R,
indicates the member basic regions in cluster Ci, where Ci represents
the number of basic regions in Ci. The former output is in the same
format, where only difference is that the second column lists the core
basic regions of the cluster specified in the first column.

CLUSTER MEMBER

C1 r11
...

...

C1 r
1C1

C2 r21
...

...

C2 r
2C2

...
...

CkC
rkC1

...
...

CkC
r
kCCkC

Table 13: Cluster coverages

The cluster detection for this particular industry took about four
minutes on Macbook Pro (Late 2013, 2.6GHz Intel Core i7, 16GB RAM,
1600MHz DDR3). Generally, the computation takes longer for more
ubiquitous industries. For instance, the cluster detection for another
SIC three-digit industry, “bakeries and confectionary products”, took
three days.16

15Each cluster detected is a slightly conservative version of the one defined in Mori
and Smith [1, §4], in the sense that each cluster consists of the d-convex solid of only
the core part rather than that of the entire cluster. The present approach is compu-
tationally less demanding without requiring any critical conceptual compromise.

16The computation time varies widely depending on the environment. For instance,
Mac Pro (Late 2013, 12 Core Xeon E5) finished identifying “bakery” clusters in a few
hours.

13

Figures 3 and 4 show the spatial coverage of clusters of “livestock
products” and “ophthalmic goods including frames” industries in Japan
in 2001, respectively. The red area indicates the core part of the clus-
ters in which establishments are located, while the pink area are the
vacant regions which have been included in the d-convex solid of the
core parts.

Figure 3: Clusters of “livestock products”

14

Figure 4: Clusters of “ophthalmic goods including frames”

3.2 Compilation

There are eleven common components used in the C++ cluster detec-
tion program. These are listed in Table 14 together with their depen-
dencies. Our compilation is conducted in Apple’s Xcode Ver. 5.1 under
Mac OS X ver. 10.9.2 with the compiler for C++, Apple LLVM ver.
5.0, with options, “-Ofast” (i.e., fast, aggressive optimization) and “-
static” (i.e., prohibit dynamic link). The compilation is also verified us-
ing GNU C++ (g++, ver.4.7.3),17 under Ubuntu Linux ver. 13.04, where
the makefile is shown in Table 15.18,19

17GNU g++ is a free C++ implementations for Unix/Linux operating systems pro-
vided by the GNU project (http://www.gnu.org).

18The “makefile” is the name of the text file with the contents shown in Table 15.
This makefile assumes all the relevant files are in the same folder.

19It is known that the command line compilation using GNU g++ does not work
under Mac OS X due to linker problems. The use of Xcode is recommend under Mac
OS X.

15

Class Dependencies

ClusterBuilder ClusterSystem
Cluster
Region
Distance

ClusterSystem Cluster
Region
Distance

Cluster Region
Distance

Region Distance

Distance
ShortestPathData
IndustryLocationData

Csv1

Csv1 NamedObject

NamedObject IOAdapter
StringManipulator

CantOpenFile
NoFile

Table 14: Class dependencies

16

CC = g++
EXEFILE = main
TARGET =IdentifyClusters

OBJ = $(EXEFILE).o Region.o IndustryLocationData.o Distance.o ShortestPathData.o NoFile.o
CantOpenFile.o Cluster.o ClusterSystem.o ClusterBuilder.o Csv1.o StringManipulator.o IOAdapter.o

$(TARGET) : (OBJ)(CC) $(OBJ) -o $(TARGET) -O3 -w -static
$(EXEFILE).o : $(EXEFILE).cpp Region.h IndustryLocationData.h $(CC) -c $< -o $@ -O3 -w -static

Region.o : Region.cpp Region.h Distance.h
$(CC) -c $< -o $@ -O3 -w -static

IndustryLocationData.o : IndustryLocationData.cpp IndustryLocationData.h
$(CC) -c $< -o $@ -O3 -w -static

Distance.o : Distance.cpp Distance.h
$(CC) -c $< -o $@ -O3 -w -static

ShortestPathData.o : ShortestPathData.cpp ShortestPathData.h
$(CC) -c $< -o $@ -O3 -w -static

Cluster.o : Cluster.cpp Cluster.h Region.h Distance.h
$(CC) -c $< -o $@ -w -static

ClusterSystem.o : ClusterSystem.cpp ClusterSystem.h Cluster.h Region.h Distance.h
$(CC) -c $< -o $@ -O3 -w -static

ClusterBuilder.o : ClusterBuilder.cpp ClusterBuilder.h Cluster.h Region.h Distance.h
$(CC) -c $< -o $@ -O3 -w -static

StringManipulator.o : StringManipulator.cpp StringManipulator.h
$(CC) -c $< -o $@ -O3 -w -static

Csv1.o : Csv1.cpp Csv1.h NamedObjectVector.h StringManipulator.h IOAdapter.h
$(CC) -c $< -o $@ -O3 -w -static

IOAdapter.o : IOAdapter.cpp IOAdapter.h
$(CC) -c $< -o $@ -O3 -w -static

NoFile.o : NoFile.cpp NoFile.h
$(CC) -c $< -o $@ -O3 -w -static

CantOpenFile.o : CantOpenFile.cpp CantOpenFile.h
$(CC) -c $< -o $@ -O3 -w -static

Table 15: Makefile for cluster detection

4 Spurious Clusters

This section presents C++ programs generating spurious clusters for
each industry. If the actual establishment locations of a given indus-

17

try exhibit a significant clustering tendency, then the BIC value of the
corresponding cluster scheme should be significantly larger than those
of the spurious clusters identified from randomized establishment lo-
cations of this industry. Below, Section 4.1 presents the program which
generates the set of randomized locations for each industry, and Sec-
tion 4.2 presents the program which identifies the cluster schemes from
these random location patterns.

4.1 Randomization of Establishment Locations

GenerateRandomLocations generates samples of randomized location
patterns of establishments, where in each sample, all the establish-
ments in a given industry are randomly distributed among the basic
regions according to a given reference probability distribution over the
set of basic regions. The reference distribution adopted in Mori and
Smith [1] is the distribution of developable area, i.e., the uniform prob-
ability distribution over the developable area. But, any other reason-
able reference distribution can be substituted.

The input parameters should be listed in the text file named “in-
put generate randomlocation.txt” containing eight lines shown in Ta-
ble 16.

Line number Input Data type Description

1 First industry, i
integer

0  i < I

2 Last industry, j i < j  I

3 Industry list (Table 1) string File name

4 First random sample, k
integer

k � 1

5 Last random sample, ` ` � k

6 Establishment counts (Table 2)

string
File name

7 Areal sizes (Table 3)

8 Output directory Directory path

9 Output filename (common part)

Table 16: input generate randomlocation.txt

The program generates from k-th through `-th random location sam-

18

ples for the i-th through j-th industries. All samples for a given indus-
try i is written in the industry-specific folder specified at the eighth
line, e.g., “./random locations/”.

Before running this program, the subdirectories for individual in-
dustries should be constructed under the output directory, where the
the name for each subdirectory should be the industry ID. For instance,
in the case of the Japanese SIC three-digit manufacturing industries in
2001, these are 121, 122, . . ., 34D. Thus, the output directory structure
should look as below:

./random locations

121

122
...

34D

The results for each k-th sample for this industry is then written to
a file named “random locations ind i k.csv” in the directory, “./ ran-
dom locations/i/”. It is a two-column CSV data as in Table 17 where
the first column lists the all the basic regions in R, and the second col-
umn lists the number of establishment counts in each region specified
in the first column. The sum of the second column, PR

k=1 nk, equals the
total number of establishments in the given industry i.

r1, n1

r2, n2

...
...

R, n
R

Table 17: Randomized location patterns

4.2 Construction of Spurious Clusters

GenerateSpuriousClusters identifies the best cluster scheme for each
random location pattern generated by GenerateRandomLocations above.

19

Before running this program, the output directory should be constructed
just like the case of random location patterns in Section 4.1 above.
Namely, if the results for all industries were to be stored in a folder
named “./spurious clusters/”, then under this folder, construct subfold-
ers for individual industries, i1, i2, . . . , iI 2 I, i.e., “./spurious clusters/i1/”
... “./spurious clusters/iI /”.

The input parameters should be listed in the text file named “in-
put generate spuriousclusters.txt” containing the following fourteen
lines as in Table 18.

Line number Input Data type Description

1 First industry, i
integer

0  i < I

2 Last industry, j i < j  I

3 Industry list (Table 1) string File name

4 First random sample, k
integer

k � 1

5 Last random sample, ` ` � k

6 Cluster expansion range double [0,1)

7 Areal sizes (Table 3)

string

Filename
8 Adjacency relations (Table 4)
9 Boundaries (Table 5)

10 Inter-regional distances (Table 6)
11 Shortest-path sequences (Table 7)

12 Input directory
Directory path

13 Output directory

14 Input filename Filename

Table 18: input generate spuriousclusters.txt

The “spurious” cluster schemes for the k-th through `-th random
location samples of the i-th through j-th industries are identified. The
input directory specified at the twelfth line should coincide with the
output folder in (the eighth line of Table 16) in Section 4.1, and the
input filename specified at the last line in Table 18 should coincide with
the output filename in (the last line of Table 16) in Section 4.1. The
identified cluster schemes are saved in the output directory specified
at the thirteenth line of Table 18.

20

4.3 Spuriousness Test

SpuriousnessTest.py computes p-value under the null hypothesis that
the identified cluster scheme is spurious, i.e., the BIC value of the ac-
tual cluster scheme and those of the spurious cluster schemes come
from the same statistical population. The p-value is computed as the
share of spurious cluster schemes with larger BIC values than that of
the actual cluster scheme. This program also generates a file contain-
ing a column of BIC values for spurious cluster schemes identified by
GenerateSpuriousClusters in Section 4.2 for each industry. In the case
of 163 Japanese three-digit manufacturing in 2001, the spuriousness of
cluster schemes is not rejected for eight industries (“coke”, and seven
munitions industries).20

The inputs for this computation are the event log files from Iden-
tifyClusters in Section 3 and those from GenerateSpuriousClusters in
Section 4.2 together with the industry list file described in Table 1.

5 Essential Containment

IdentifyEssentialContainment identifies the d-convex solid of the es-
sential clusters (i.e., the most significant clusters in terms of the BIC
contributions accounting for at least a given share of the total BIC val-
ues of the cluster scheme) in each connected subset of the basic re-
gions.21 If the set of the basic regions, R, consists of multiple discon-
nected regions, then the d-convex solidification of essential clusters is
conducted within each connected subset of basic regions. For instance,
our Japanese data consists of two disconnected subsets of basic regions,
i.e., the subsets of basic regions inside and outside Hokkaido.

20In Mori and Smith [1], the spuriousness is not rejected also for “tobacco man-
ufactures” industry at 0.05 level. But, under our newly generated spurious cluster
schemes, the spuriousness has been rejected for this industry. But except for these
nine industries, p-values are virtually zero.

21The definition of essential clusters here is simpler than the one introduced by
Mori and Smith [1]. But, the program can be easily modified to incorporate alterna-
tive conditions, including the original definition by Mori and Smith [1].

21

The input parameters should be listed in the text file named “in-
put identify essentialcontainment.txt” containing the fourteen lines
as in Table 19.

Line number Input Data type Description

1 First industry, i
integer

0  i < I

2 Last industry, j i < j  I

3 Industry list (Table 1) string File name

4 Input directory (summary of cluster detection)
string Directory5 Input directory (cluster coverage)

6 Output directory

7 Cumulative BIC share double [0,1)

8 Establishment counts (Table 2)

string File name

9 Areal sizes (Table 3)
10 Adjacency relations (Table 4)
11 Boundaries (Table 5)
12 Inter-regional distances (Table 6)
13 Shortest-path sequences (Table 7)

Table 19: input identify essentialcontainment.txt

Many inputs (the first through third and eighth through thirteenth
lines) are common to the inputs for the cluster detection listed in Table
9. The inputs in the fourth and fifth lines should coincide with the
locations of the outputs from the cluster detection.

The double-valued cumulative BIC share, �, for the essential clus-
ters is specified at the seventh line. There are two output file for each
industry from the present computation, “essential containment cumu-
lative BIC share [�⇥100] ind [industry ID].csv” and “summary essen-
tial containment cumulative BIC share [�⇥100] ind [industry ID].csv”,
to be stored in the directory indicated in the sixth line of Table 19. The
former contains a two-column CSV data similar to Table 13. The sec-
ond column in this output data lists the basic regions which belong
to the essential containment of the clusters for the given industry. The
basic regions in the second column with the common first-column value
belong to the same connected portion of essential containment. Thus,
the number of distinctive values in the first column coincides with the
number of disconnected portions in the essential containment. In the

22

case of Japan, since our data consists of two disconnected subsets of ba-
sic regions (i.e., inside and outside Hokkaido), the maximum number
of disconnected portions in the essential containment is two.22

The latter contains summary description of essential containment:
the total number of clusters, the number of essential clusters, share
of essential clusters (in terms of the number of clusters), the share
of establishment counts in essential clusters, BIC share of essential
clusters, areal share of essential clusters, the global extent of essential
clusters (i.e., areal share of essential containment), and local density
of essential clusters (i.e., areal share of essential clusters within the
essential containment).

For example, the essential containment for � = 0.88 of the cluster
scheme of “livestock products” and that of “ophthalmic goods including
frames” are shown as the yellow areas in Figures 5 and 6, respectively,
where the clusters are also shown in the former.23 The “livestock prod-
ucts” is a typical ubiquitous industry, and hence, the clusters are dis-
tributed widely across the country. The essential containment for this
industry covers a large area (64.5%) within the country. On the other
hand, “ophthalmic goods” industry is highly concentrated in Sabae re-
gion as indicated in the figure, and hence this region itself is the essen-
tial containment, covering only 3.5% of the national area.

22The values in the first column are only to distinguish disconnected portions of
essential containment. Their specific value does not carry any other information.

23The correlation between the global extent and local density of essential contain-
ment across industries become minimum at � =0.88. See Mori and Smith [1, §5.2] for
the interpretation of these two measures of spatial concentration.

23

Figure 5: Essential containment of “livestock products” for � = 0.88

Sabae

Figure 6: Essential containment of “ophthalmic good including frames”
for � = 0.88

24

6 Agglomerations

The python program, FindAgglomerations.py, identifies the agglomer-
ations which is the refinement of clusters defined in Mori and Smith [1,
§5.4]. Essentially, each agglomeration is defined by the single-peaked
set of contiguous clusters where the peak is identified in terms of es-
tablishment density (or density of any other variables of interest, e.g.,
employment).24 Establishment and employment distributions across
clusters should be easily computed from the output of IdentifyClusters
(Section 3) together with the establishment location patterns (Table
2).25 These inputs for identifying agglomerations are specified at the
beginning of FindAgglomerations.py.26 The clusters of negative BIC
contributions (those clusters with negative values for BIC INC column
in the summary log, Table 11) are excluded from the agglomerations.

The maps of agglomerations for “livestock products” and “ophthalmic
goods including frames” are shown in Figures 7 and 8, respectively.
In each figure, the agglomerations are distinguished by color, where
a larger (smaller) concentration of establishments is indicated by the
color closer to red (yellow).

24Moreover, each agglomeration is filled, i.e., there is no interior complement of the
agglomeration in R.

25A Python program, EstabEmpSizeOfClusters.py, can be used for this task.
26The first inputs, targets, is a list of industry IDs for which agglomerations are to

be identified. If it is empty, then agglomerations will be identified for all industries.

25

Figure 7: Agglomerations of “livestock products”

Figure 8: Agglomerations of “ophthalmic goods including frames”

26

7 Programs and Data

All the source codes of the C++ and Python programs, relevant input
and output data, as well as the shape file of Japanese municipalities
in 2001 are available from the website: http://www. mori.kier.kyoto-
u.ac.jp/data/ cluster detection.html.27 In particular, by “joining” the
outputs to the shape file of Japanese municipalities, the maps of clus-
ters, agglomerations, and essential containments can be generated.

The “Program.zip” file contains all the C++ and Python programs.
Under the C++ folder, all the relevant C++ source codes are stored. The
Classes folder contains the common source codes used across C++
programs. In each of the other subfolders, e.g., IdentifyClusters,
contains the specific main.cpp codes to be compiled with the relevant
C++ files in Classes.28 An example makefile, makefile, in Identify-
Clusters folder can be used to compile any other C++ programs by
specifying the appropriate main.cpp file.29 All the input files, e.g., in-
put detectclusters.txt, for C++ programs are stored directly under C++
folder. All the Python programs are stored in the Python folder.

/Programs

C++

Classes

IdentifyClusters

IdentifyEssentialContainment

GenerateRandomLocations

GenerateSpuriousClusters

27The sets of random location patterns and spurious cluster schemes are not up-
loaded on the web (due to their large size). The shape file is tested on ESRI’s ArcGIS
ver.10.2.

28Thus, in Apple’s Xcode, in order to compile executable programs, the references to
the relevant files in Classes should be explicitly added. In the case of the command-
line terminals in Linux operating systems, the directory path to these relevant files
should be explicitly specified in the makefile.

29TARGET variable in makefile is going to be the name of the executable file. Thus,
depending on the program to be compiled, an appropriate name should be substi-
tuted.

27

Python

ShortestPathLocalMoveMP.py

SpuriousnessTest.py

EstabEmpSizeOfClusters.py

FindAgglomerations.py

References

[1] Mori, Tomoya and Tony E. Smith. 2014. “A probabilistic modeling
approach to the detection of industrial agglomerations.” Journal of
Economic Geography, forthcoming.

[2] Mori, Tomoya and Tony E. Smith. 2011. “An industrial agglomera-
tion approach to central place and city size regularities.” Journal of
Regional Science 51(4): 694-731.

28

